254 research outputs found

    Front and Turing patterns induced by Mexican-hat-like nonlocal feedback

    Full text link
    We consider the effects of a Mexican-hat-shaped nonlocal spatial coupling, i.e., symmetric long-range inhibition superimposed with short-range excitation, upon front propagation in a model of a bistable reaction-diffusion system. We show that the velocity of front propagation can be controlled up to a certain coupling strength beyond which spatially periodic patterns, such as Turing patterns or coexistence of spatially homogeneous solutions and Turing patterns, may be induced. This behaviour is investigated through a linear stability analysis of the spatially homogeneous steady states and numerical investigations of the full nonlinear equations in dependence upon the nonlocal coupling strength and the ratio of the excitatory and inhibitory coupling ranges.Comment: Accepted in EP

    Effect of small-world topology on wave propagation on networks of excitable elements

    Get PDF
    We study excitation waves on a Newman-Watts small-world network model of coupled excitable elements. Depending on the global coupling strength, we find differing resilience to the added long-range links and different mechanisms of propagation failure. For high coupling strengths, we show agreement between the network and a reaction-diffusion model with additional mean-field term. Employing this approximation, we are able to estimate the critical density of long-range links for propagation failure.Comment: 19 pages, 8 figures and 5 pages supplementary materia

    Nonlocal control of pulse propagation in excitable media

    Full text link
    We study the effects of nonlocal control of pulse propagation in excitable media. As a generic example for an excitable medium the FitzHugh-Nagumo model with diffusion in the activator variable is considered. Nonlocal coupling in form of an integral term with a spatial kernel is added. We find that the nonlocal coupling modifies the propagating pulses of the reaction-diffusion system such that a variety of spatio-temporal patterns are generated including acceleration, deceleration, suppression, or generation of pulses, multiple pulses, and blinking pulse trains. It is shown that one can observe these effects for various choices of the integral kernel and the coupling scheme, provided that the control strength and spatial extension of the integral kernel is appropriate. In addition, an analytical procedure is developed to describe the stability borders of the spatially homogeneous steady state in control parameter space in dependence on the parameters of the nonlocal coupling

    Synchronization of organ pipes

    Full text link
    We investigate synchronization of coupled organ pipes. Synchronization and reflection in the organ lead to undesired weakening of the sound in special cases. Recent experiments have shown that sound interaction is highly complex and nonlinear, however, we show that two delay-coupled Van-der-Pol oscillators appear to be a good model for the occurring dynamical phenomena. Here the coupling is realized as distance-dependent, or time-delayed, equivalently. Analytically, we investigate the synchronization frequency and bifurcation scenarios which occur at the boundaries of the Arnold tongues. We successfully compare our results to experimental data

    Amplitude chimeras and chimera death in dynamical networks

    Get PDF
    We find chimera states with respect to amplitude dynamics in a network of Stuart-Landau oscillators. These partially coherent and partially incoherent spatio-temporal patterns appear due to the interplay of nonlocal network topology and symmetry-breaking coupling. As the coupling range is increased, the oscillations are quenched, amplitude chimeras disappear and the network enters a symmetry-breaking stationary state. This particular regime is a novel pattern which we call chimera death. It is characterized by the coexistence of spatially coherent and incoherent inhomogeneous steady states and therefore combines the features of chimera state and oscillation death. Additionally, we show two different transition scenarios from amplitude chimera to chimera death. Moreover, for amplitude chimeras we uncover the mechanism of transition towards in-phase synchronized regime and discuss the role of initial conditions

    Delay-induced patterns in a two-dimensional lattice of coupled oscillators

    Get PDF
    We show how a variety of stable spatio-temporal periodic patterns can be created in 2D-lattices of coupled oscillators with non-homogeneous coupling delays. A "hybrid dispersion relation" is introduced, which allows studying the stability of time-periodic patterns analytically in the limit of large delay. The results are illustrated using the FitzHugh-Nagumo coupled neurons as well as coupled limit cycle (Stuart-Landau) oscillators
    • …
    corecore